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An Interactive direct flu~tter solving routine has been installed on
ARL's ELXSI computer. Interactive graphics routines, using DI-3000
graphics, software, have been incorporated to give the user a
progressive picture of the solution. Estimates of subcritical response
data may also be determined using this method. A description of the
method and the associated software Is presented here. Also included is '
a two-dimensional flutter problem, using quasi-steady aerodynamics,

whih i sovedbythis direct flutter solver.
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1.

1 INTOOI)UCIO

The classical methods for the solution of the flutter equations are

the k method ("American Method") and the p-k method ("British Method"),

see [1,2]. Both these methods treat the flutter equations, which are a

set of n second-order linear homogeneous differential equations, as an

eigenvalue problem and solve for the eigenvalue, X. Here the imaginary

component of X gives the frequency of the response while the real

component provides the decay rate. Flutter occurs when the oscillation is

non-convergent, i.e., when the decay rate is zero.

The flight speed at which this occurs is called the flutter speed.

The k method assumes that the aircraft's aeroelastic response is

sinusoidal and hence the solution is correct only at the flight flutter

speed. No such restriction is made in the p-k method. The latter method

does assume, however, that the aerodynamic forces due to constant

amplitude oscillating lifting surfaces are equal to aerodynamic forces

generated by lifting surfaces with slowly increasing or decreasing

amplitudes of oscillation. This assumption is accurate for low values of

decay rate, either positive or negative. The p-k method is therefore more

accurate in the subcritical and super critical regime than the k method.

In flutter problems the prime concern is to calculate the flutter

speed, in which case the k and the p-k methods will provide accurate

results. Another concern is the aircraft's suboritical flight

characteristics, whereby if in flight or wind tunnel tests the flutter

speed is not attained then these characteristics can be used for

comparison with the appropriate mathematical model. In this case the p-k

method will give more accurate results than the k method.

A now method of solving the flutter equation Is described in

Referenoes 3 and 4. The present paper describes a computer program based S

on this method which provides estimates of subcritical response data.

Unlike classical methods, this direct flutter solver allows the user to

establish quickly relationships between any two parameters which satisfy

the flutter equations.

t4
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2.

2. THE FLUTTER EQUATION

The aeroelastic motion of an aircraft can be modelled by the flutter

equations which may be given in non-dimensional form as:

[A] q + B+D + E C + E I qsO (1)

where A, D, and E are, respectively, the structural inertia, damping and

stiffness matrices, B and C are, respectively, the aerodynamic damping and

stiffness matrices, and q is the generalised co-ordinate vector. The

aerodynamic matrices are functions of the non-dimensionalised frequency v,

Mach number M, velocity U, air density p , and aircraft planform.

Here V r

where w is the frequency of oscillation, 1 is the reference length and U

the flight velocity. In this case q - 3q/3T where t is the non-

dimensional time given by t - tU/ . On substituting q (W) - qo ZX and

dividing by x1 equation I becomes -

X [A] + X C B + D + + E C + E 3 } qo 0 (2)

Here x - 6 + iv, 6 - vA and a is the decay rate of the response.

Equation 2 may be rewritten as -

[S] q - 0

where 8, the system matrix, Is a function of U, M, v, air density (p),

stiffness, damping, mass distribution and so on.

3. n1oo OF SOUTION

3.1 beflaing Initial latimetes

Consider n real parameters x .... ""' which specify the
model; then eqn (3) can be expresse4 ast -

SW(x3 q0- ~



For a non-trivial solution the system matrix must be singular; thus the

determinant, which is normally complex, must be zero.

Following the notation in Reference [], itf two of the system's

parameters, xj and Xk1 are not fixed then the equation that must be

satisfied is

S(x) -F(xjx k ) - F (xj.x h ) + I F (xjx h ) - 0 (5)

Gaussian elimination is used to evaluate the determinant of the

system matrix S. For large degree of freedom systems the slowest step in

evaluating F(xjxk) is the evaluation of the system matrix S.

To minimize the number of function evaluations, the secant method 1s

used to solve for the two variablesxj and xk , so as to satisfy equation

(5). This is described more fully in Reference 4.

The secant method requires three points at any time to evaluate a

refined estimate. For the first Iteration, the three points are given

by P(X; ,x; ), F(xl + X , x$) and F(x3 * x ik in the

F, xi 1k o-ordinate system and ( (xF X ., and

F (x, xO 4 xk) In the F, co, k o-ordldnate system. The initiate

estimate is denoted by the superscript zero. These points then determine

a plane In each oo-ordLnate system. The ref ined estimate (x, x) is

obtained by determining the point of Intersection of the above two planes

with the plane F - F - 0.

The solution is said to have converged at the nth iteration when -

n n-1 n n-1
xk Xk

Xi IxlO<O00 (6k

It convergence does not ocour at the nth Iteration then one of the points
.n-3 xn-3 n-1 n-2 n-1 n-" 1 ) , wthvrt utett
(X , x ,.3 . ( 1 n-l x k ) or (xj , )' whichever is furthest from

the refLned estimate (X-n Xk), is discarded and so the two surviving

points plus n x ) are used to obtain a further refined estimate
,n+l n+11
'Xi , x

V:



3.2 Scal.ing
In evaluating the determinant of S, computational problems may arise

either when its diagonal elements are very large leading to overflow, or

when they are very small so that significant figures may be lost. In

order to overcome these problems each row of the determinant Is divided by

its diagonal element.

3.3 Predicting Initial Estimates

The Idea of this direct method of solution is to solve for two

dependent parameters xj and xk as one varies a particular independent

parameter xi. That is, to observe the effect on xi and xk as x1 varies.

Assume a particular independent parameter, denoted by Xlp, has the

solution (Xj~p, Xk,p). The procedure for predicting the new initial

estimate is shown In Figure 1. To march along the xI axis, a small

increment is closer such that x 1p+1 - xI  + 6x1 . Thus the initial
0 0 I

estimate (x Jp+1, xk p+1) is taken as (2j,p, xk,p), causing rapid

convergence to the solution (xj,pl,, Xkgp+l). The estimate for the new

point Xi,p+2 (i.e. (x1tp'2 , x, )) is obtained by linear extrapolation

using the previous two solutions.

The step 6 xI is small to ensure rapid convergence Once convergence
has been attained an arc of a circle is fitted through the three points

xi'p, xi,p+l, and xi,p,2, to obtain an estimate for the dependent

parameters at xLP+3.  Fitting an arc of a circle allows one to rise0 0

large 6xi and still obtain accurate initial estimates (Xj, xk) which are

essential to obtain rapid convergence to the solution (xj 1k).

4. PRG
Appendix A contains descriptions of the main subroutines used to

solve the flutter equation. The user-supplied main program PREPFLSO and

subroutine SYSCAL are described in Appendix B. A block diagram of all

subroutines used In program VALUSSOLYV is shown In Figure 2.

I



5. J5.

A simple two-degree-Of-freedom 
system is considered here. This

example (taken from Dowell et 
al, ReferenCe 51) was used to validate the

program.

The typical section, is shown in Figure 3. if the angle of

attack, a, and the vertical displacement, h, are the generalized co-

ordinates then the equations of motion 
about the elastic 

axis for the h

and the a components. respectively, 
become

m h + Sa a + Khh 
+ L - 0  

(Ta)

and +S h K a- M -(7b)
nd a a Y

Here m mass of section,

Kh a bending stiffness,

K torsional stiffness,

L - resultant lift force 
per unit span

I M moment of Inertia of 
the section about the 

e.a.,

HM moment about elastio 
axis due to L,

a y distance from e.a. 
to aerodynamic centre,

mx ,and

x distance from e.a to 0.5.

Using quasi-steady aerodynamic theory the resultant section lift

force, L, is given by

q -t -

(8)

aa U

where q A 1/2 p U

9 a density of air,

4U 
a flight velocty #

a a wing ohord, and

CL W lift meffioient.

'4
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6.

• .11 -

Using I -am ra , Sc -mx a c and H -y Le and substituting eqn (8)
into *qn (T), eqn (T) may be written an "

- - 1 2 aM h .ax a+ K h OU C L-- a+ 0 -
aKtct

and

-•" -1 • aCL h
ma r a x a ch+K aa-pU ce -[o. ]-0 (9)U U a 2 a

Let U U/ow

h/c
- U/0 t

- (U/c)

(U/o) a

SKh/w and

a K /Ia U U

1 2 -. 1
and by multiplying eqn (9) by (1/2 pU o ) , eqn (9) can be non-

dimen-lonalised to give, In matrix form,

2 1 N ac L 0

2 Kh  ac l,

* 0  a 2 K c - 0 (10)

0 nL

Note that the overblr denotes non-dimensional quantities.

ssuming the solution Is osoillatory, then

-ad I0

............ -- -- ,1-



7. I:

where X a (Av + iV)

V uc/U

A a decay rate (fraction of critical)

Alternatively,

X A_ + I -_
W1

ie X X/5 (12)

Using eqns (11) and (12) and rearranging, eqn (10) becomes,

[I: X (13)r

4where "---•
'po

The above eqn is of the form

C S(x) o" 0 (13)

and so can be solved by our method.

Appendix C gives a list of the parameters, their corresponding values

and listings of the user-supplied routines. Figure ii contains plots of
w/w and As/w versus U . Comparisons with results published in Dowel1l/

St al. (Reference [5] are also shown in Figure 'i, and it can be seen thata good agreement has been obtained.

; S:.I po .s0(14)

Athe follCngi a list of eprmets that colde inorvated
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I. A reasonable initial estimate is required so that the solution

will converge quickly. Consequently one could incorporate a

classical eigenvalue solver to obtain initial solutions of

damping and frequency at V - 0.

2. An interpolation procedure to determine the flutter speed

accurately.

3. Use of a conic or cubic spline extrapolation to estimate the next

x and xk. Presently only an arc of a circle is used.

There are a number of options contained in the original program

(described in Reference (41) that have, as of yet, not been included in

the version at ARL. These options are:-

1. Display of error function (see eqn (6)) against number of

iterations.

2. Stability test, i.e., if for a particular solution of xj Vs xi,

say, the domain of stability is not particularly clear. This

test determines which domain is stable.

7 . CONCUSION

A direct method of solving the flutter equations has been programmed

at ARL. The program is interactive. Graphics routines, using DI-3000

software, have been incorporated to give the user an immediate picture of

the solution's progress. The user may evaluate the relationship between

any two parameters for which the flutter equation is solved, the only

prerequisite being that these are variables in the subroutine that

calculates the system matrix (i.e. subroutine SYSCAL). This method also

provides estimates of subcritical response data.
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APPENDIX A

Flutter Solver Routines

Table 1 gives a list of the routines used in VAFLUTSOLV. A more

detailed discussion of each routine, except for the user supplied routines

(see Appendix B), is given below.

Subroutine INIT

This subroutine prompts the user on -

(a) the choice of independent and dependent parameters to be used

initially, and

(b) the initial estimates or the dependent parameters for a

particular independent parameter.

If convergence has not been achieved in 20 iterations (this check is

carried out in subroutine F2V) then the user has the option of entering

another estimate or continuing with the present estimate.

Subroutine OUTP

This subroutine outputs the present values of the independent and

dependent parameters.

Subroutine CHAND (OPTIONS, IOPT, ICOM)

When called, this subroutine displays a list of options contained in

the character array OPTIONS. Generally the integer variable IOPT

specifies the number of options available and ICOM is the integer returned

to the caller routine (i.e. ICOM is the option selected). Other

variations are, If on entry

4.

IOPT - 0 then the DI 3000 graphics software is initialized,

IOPT - -1 then the soreen is aleared, and
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IOPT - -2 then the screen is set up for interactive plotting.

If on calling CMAND, ICOM - -2, then options are set up but no command IsI

returned to the caller routine

Subroutine TPTEXT

This routine provides a list of parameters with corresponding values.

Subroutine DLABEL (XMIN, YMIN, XMAX, YMAX, LABX, LABY, SIZE)

When called, this subroutine selects suitable scaling for the x and y

axes. The graph axes, with appropriate labelling, are drawn and stored in

the integer array, PICTI, using routines from GRAFMAKER graphics software

(which is based on DI 3000 graphics software).

The first four dummy arguments, listed above, give the lower and

upper limits of the variables to be plotted (here x and y denote the

horizontal and vertical axes, respectively) Character variables LABX and

LABY contain the x and y label names, respectively. The desired maximum

dimension of the plot is given by the real variable SIZE, where the screen

is assumed to be 10 units square (i.e. SIZE < 10).

Subroutine DISP

On calling subroutine DISP a plot of the first dependent parameter

versus the independent parameter is displayed. Subroutine CMAND is then

called; thus, the following menu Is displayed:

VRBLS 1

SELECT 2

CONT 3
DELETE 4I

STABLITY 5

STEP SZ 6

SKP PT 7

PLOT 9

CHO VOL 9
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Once an option is selected, subroutine DISP then executes the

command. A description of each option is given below:-

(1) VRBLS - step (a) Displays a plot of the second dependent parameter

versus the Independent parameter,

step (b) Displays the menu

SHW IVZ 1

CHG VBL 2

CONT 3

where SHW IVZ again displays a plot of the first dependent parameter

versus the independent parameter, CHG VBL allows the user to select new

independent and dependent parameters and CONT causes the main menu to be

displayed again.

(2) SELECT Allows the user to select new starting values. This is

to be used if the solution has not converged or if the

dependent and independent parameters have been changed.

(3) CONT Returns the user to the caller routine (DRIVNF).

(4) DELETE Deletes the previous entry.

(5) STABLITY Not operative.

(6) STEP SZ Displays the menu,
' /

INCRSE 1

DECRSE -1

SAME 0

By entering 1, -1, or 0 the user may double, halve or not alter the

step size, respectively.

(7) SKPPT Not operative.
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(8) PLOT Stores plots, presently displayed on the screen, into a

metafile (Refer to the DI-3000 manual). The name of the

metafile is specified by the user after the screen

displays the prompt:

...ENTER FILE NAME.

(9) CHG VBL Allows the user to select new independent and dependent

parameters.

Subroutine VORT (XO, Y0, Xl, Y1, X2, Y2, ICL)

Given co-ordinates of a circle centre (XO, YO) and two points (Xl,

YI), (X2, Y2) on the circle, subroutine VORT determines the direction from

I to 2. Subroutine VORT returns ICL = 1 if the direction is clockwise or

ICL - -1 if it is anticlockwise.

Subroutine AMG (X, Y, TH)

Given the co-ordinates (X, Y), subroutine ANG calculates the angle in

radians where 0 < TH < 2wr

Subroutine CIRCLE (X, Y, XC, YC, RAD)

This subroutine establishes the centre of a circle (XC, YC) that

passes through three points contained In the dummy arrays X(3) and 1(3).

The radius of the circle, RAD, is also found.

Subroutine lV

This subroutine factorises the dependent parameters, using the real

array FACTR (see PREPFLSO), and then calls subroutine F2V.

Subroutine FG (XX, Y, F, G)

Given dependent parameters XX and Y this subroutine calls subroutine

SYSCAL to calculate the system matrix S. Subroutine CMINV is then called

to obtain the complex determinant of S (i.e. ISI -F + i 0).

W

I b
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Subroutine CI_ _ (A, N, ND, B, L. D, IRROR)

If L is negative, zero or positive then the N x N matrix A Is

inverted, by Gauss-Jordon Pivotal elimination, and A is replaced by its

inverse.

If L is positive then the N x L matrix B is manipulated by the same

procedure as used to Invert A and is then replaced by the resulting

matrix.

Subroutine F2V (XX, YY, EPS, NC, IR, FG)

This subroutine calls subroutine FG to determine the determinant ISI

given the two dependent parameter estimates (XX, YY). These estimates are

then refined by using the secant method. Convergence of the estimates is

checked by using eqn (6). If either convergence Is attained or the

maximum number of Iterations is exceeded then the user Is returned to NF

and hence to DRIVNF.

Subroutine DRIVNF

Subroutine DRIVNF is the main subroutine of program VAFLUTSOLV. This

subroutine calls INIT to obtain the initial estimates from the user. That

is, for a particular independent parameter value (x, p ), estimates XJ°

and x 0 are supplied by the user. Subroutine NF is then called (at
k,p

least three times) to evaluate solutions for the first two increments In

the independent parameter (i.e. solutions are obtained at xi p , xj p + ,

and xi,p,2 ) in a manner similar to that discussed in Section 3.

Subroutine CIRCLE and VORT are then called to determine the initial

estimates for the next point (xip+4). Once again NF 1 called to solve

for the dependent parameters (xjp+4, Xk,p+4). If the solution has failed

to converge (see Subroutine F2V) then the step size of the independent /

parameter Is halved, and the above procedure is repeated. If the initial

estimate, at half the step size, does not converge then the step size Is

halved again. Rapidly varying functions of xi usually cause estimates,

when fitting an arc of a circle, to be inaccurate and hence convergence is

hard to attain.

If convergence has not occurred after carrying out the above ..i fl
procedure then the program steps backward, In small steps, to obtain two
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other solutions just upstream of the last convergent point (i.e. X ipn3 in

this ease). With these three points a new estimate (X jp.x- Xkp.4) is

evaluated, again fitting an arc of a circle, and the program proceeds as

usual.

Interactive graphics displays are obtained by calling Subroutine

DISP.

.4/



APPENDIX B (.

User Supplied Routines

Proram PREPFLSo

COMMON/VR/ VVRBL, FACTR, IVRBL, IV1, IV2, NM

COMMON/LAB VRBL

CHARACTER *10 VRBL (12)

DIMENSION VVRBL (12), FACTR (12)

DATA (VVRBL(I), I - 1,12)V /

DATA (VRBL(I), I - 1,12)/ /

CALL DRIVNF

END

This program sets up the number of parameters, the parameter

values, the independent parameter and the number of degrees-of-freedom of

the problem. The variables that need to be defined are:-

VVRBL - Array containing the values of the parameters (allowed up

to 12 parameters).

FACTR - Array of values used to factorize the parameters (set

FACTR(I) - 1/VVRBL(I)).

IVRBL - Index of the Independent parameter.

IV1,V2 - Indices of the dependent parameter..

NN - Number of degrees-of-freedom of the system. (NR C 10). ' .

VltUL - Character array oontaIlnIng a desorIptor of the

oorrepondqi parameter, up to 10 oharacters are allowed

(i.e. WiL(1) oeetaint desoripter of aametet ViRILCI)).
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Subroutine SYSCALk

COMMON/VR/VVRBL, FACTR, IVRBL. IVI, IV2. NM

COI4MON/SYS/SYSM

DIMENSION VVRBL(12), FACTR(12)

COMPLEX SYSM(1O,1O)

Given the array of parameters, VVRBL, this routine will calculate the

system matrix S.

SY1SM -Complex array which contains the system matrix S. The

order of matrix S is NM x NM, In this case NM < 10.



APPIDIX C

TwoDegree-of-Freedom Example

Table 2 gives a list of values of the system parameters used to solve

eqn 13. Listings of the user supplied routines are given below.



PROGRAM PREPFLSO

C

C This sets up a two degree of freedom flutter
C problem.(i.e. eqn. 14) (see DOWELL et al., p80)
C
C This program starts VAFLUTSOLV by:
C (1) specifying the no. of D.O.F. of the system.
C (2) specifying the parameters of the system and
C their initial values.
C (3) specifying the initial independent parameter.
C

COMMON/VR/VVRBL, FACTRoIVRBL, IVI, IV2, NM
COMMON/LAB/VRBL
CHARACTER*10 VRBL(12)
DIMENSION VVRBL(12),FACTR(12)
DATA (VVRBL(I)0I=1,12)/

1 10. ,0.50.5, 0.20,0.4, 1.O,O.0,0.5,6.28318#O.Oa
2 0.OO.O/

DATA (VRBL(I),I=1,l0)/
: BETA "," FREO.RAT.',
' RAD.GYRA ',' X MASS ',

' R LIFT ',' VELOCITY ,
' DEC.RATIO',' FREG
I DCl/BA '," FREQ A/

DATA PI/3.14159265/

C INDEX VARIABLE VALUE
C 1 BETA 10.
C 2 FREG.RATIO 0.5
C 3 RAD.OYRAT. 0.5
C 4 MASS MOM.ARM 0.20
C 5 LIFT MOM.ARM 0.4
C 6 NON.DIM.VEL. 0.001
C 7 NON.DIM.DECAY RA. 0.001
C 8 NON.DIM.FREO1 0.5
C 9 LIFT CURVE SL. 2PI

C** D.O.F. OF THE SYSTEM $*
NM=2

C** SET UP FACTORIZING VALUES *
DO 10 I=1,12

10 FACTR(I)=O.O

DO 20 101,10
IF(VVRBL(I).E.0.0) THEN
FACTR(I)=1.0
ELSE
FACTR(I)-1./VVRBL(I)
ENDIF

20 CONTINUE

C** SET UP INITIAL INDEP VARDLE $*
IVRBL-6

CALL DRIVNF F
STOP
END



SUB4ROUTINE SYSCAL

(1 This routine sets up the system matrix S.

COMMiON/VR/VVR'L, FACTR, IVRBL, lVb 1V2, NM
COMMONISYS/ SYSM
DIMENSION VVRBL(12), FACTR(12>
COMPLEX SYSM(10,10),M(2,2),S(2,2),A(2,2),CHI,II
DATA P1/3. 14159265/

I I=CMPLX (0. 0, 1. 0)
C** MASS/INERTIA MATRIX *

M(1. 1)1I.0
M(1,2)=0. 20
M(2, 1)-M(l,2)
M(2,2)=0. 25
CHI=VVRBL(7)+( II*VVRBL(B))

C** STIFFNESS MATRIX *
6(1, 1)I. 0
S(1, 2)=0. 0
S(2. 1)O. 0
S(2.2)=(VVRBL(3)**2. )*(1./(VVRBL(2)**2.))

C** AERO. MATRIX *
A(1. 1)-CHl
A(1, 2)-VVRBL(6)
A(2, 1)=-CHI*0. 4
A(2, 2)=-0. 4*VVRBL(6)

C** CALC. SYSTEM MATRIX *
DO 10 1=1,2
DO 10 J=1,2
M( I,J)=31. 4*(CHI**2)*M( 1.J)
S(I, J)-7. 85*S(1. J)
AI, J)106. 28*A(I. J)*(VVRE'L(6))

10 SYSM(I,-J)inM(I,J)+S(t,J)+A(I,J)

RETURN
END



TABLE 1

Summary of Flutter Solver Routines

Subroutines in I

VAFLUTSOLV File Description

INIT Input data, start program

OUTP Output data

CMAND Graphics input/output data

DISP Graphics, Output data

DLABEL Graphics, Output data

TPTEXT Graphics, Output data

DRIVNF Main solving routine

VORT Called by DRIVNF

ANG Called by DRIVNF

CIRCLE Called by DRIVNF

NF Called by DRIVNF, calls F2V

FG Calls SYSCAL to determine S

F2V Refines estimates x ,

CMINV Input A determine A', JAI

Other Routines

SYSCAL User supplied routine to determine S

PREPFLSO User supplied routine to set up problem

(IIOTEs These files are contained in sub-direotory FLUTSOLVER)



TABLE 2

List of Parameter Values used to Solve EQN (14)

Parameter
Description Index Value or Factorising

Parameter (VRBL) of Initial Guess Value
VVRBL (VVRBL) (FACTR)

Mass Parameter 1 10 0.1

wh/W Freq. Ratio 2 0.5 2.0

r Radius of Gyration 3 0.5 2.0

x Mass Moment Arm 4 0.2 5.0

e Lift Moment Arm 5 0.4 2.5

Non-dim Velocity 6 0.001 1000

W/W Non-dim. Freq. 7 0.5 2.0

8 U/W Decay Rate 8 0.001 1000

aCL /50 Lift Curve Slope 9 6.283 1.66
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Xj 0 Solution

x Estimate

Linear extrapolation

,,Arc of circle extrapolation

Xjp,1 Xipi

xi. 2

FIG. 1. METHOD FOR PREDICTING THE NEW INITIAL ESTIMATE
OF x (SIMILAR PROCEDURE FOR xk)
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FIG. 4(a) VARIATION OF NON-DIMENSIONAL FREQUENCY AND DAM4PING
WITH NON-DIMNSIONAL VELOCITY FOR THE FIRST
NATURAL MODS
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